A NOVEL ROUTE TO FORMAMIDES AND THEIR DERIVATIVES. REDUCTION OF ISOCYANATES VIA HYDROSILYLATION CATALYZED BY PALLADIUM

Iwao Ojima* and Shinichi Inaba

Sagami Chemical Research Center, 4-4-1 Nishi-Onuma, Sagamihara 229, JAPAN and Yoichiro Nagai

Department of Chemistry, Gunma University, Kiryu, Gunma 376, JAPAN

(Received in Japan 31 August 1973; received in UK for publication 25 September 1973)

Among the hydrides of the group IV elements, organotin hydrides are known to react with isocyanates across the carbon-nitrogen double bond to afford a triorgano(N-arylformamido)tin $\underline{1}$ or a triorgano(N-alkylcarbamoyl)tin $\underline{2}$.^{1,2} The former can be further converted to N-arylformamide with triorganotin hydride.¹ This is distinctly differnet from the reaction of isocyanates with LiAlH₄, which produces N-methylamines.³ The corresponding reactions of silicon hydrides and germanium hydrides have not been reported and in fact they lack reactivity toward isocyanates without a proper catalyst.

$$R_{3}SnH + R'NCO \longrightarrow R'NHCHO (R' = Aryl)$$

$$R_{3}SnC-NHR' (R' = Hexyl)$$

$$R_{3}SnC-NHR' (R' = Hexyl)$$

We found, however, that a hydrosilylation of isocyanates does really occur in the presence of PdCl₂ or Pd-C, and that the orientation of the reaction depends on the structure of isocyanates. Now, we wish to report novel catalytic reactions of triethylsilane with isocyanates, which furnishes a novel route to formamides and their derivatives.

∞-Naphthyl isocyanate was allowed to react with triethylsilane in the presence of 0.1 Mol% of PdCl₂ or 10 % Pd-C at 80° for 2-3 hr. Distillation of the reaction mixture under reduced pressure gave $N-\infty$ -naphthyl-N-triethylsilylformamide (<u>3</u>) in nearly quantitative yield. The silylformamide <u>3</u>, thus obtained, was smoothly solvolyzed to N- ∞ -naphthylformamide (<u>4</u>) by methanol in quantitative yield. The silylformamide <u>3</u> was also converted to N- ∞ -naphthyl-N-acetylformamide (5) quantitatively by the reaction with an equimolar acetyl chloride.

Phenyl isocyanate and n-butyl isocyanate were hydrosilylated in different fashion by triethylsilane in the presence of PdCl₂ or 10 % Pd-C. Thus, the addition of triethylsilane was observed across the carbon-nitrogen double bond of these isocyanates in the opposite orientation, and hitherto unknown carbamoyl silanes, <u>6a</u> (R = Ph, 95 %) and <u>6b</u> (R = n Bu, 46 %), were obtained. The reaction of the carbamoyl silane <u>6</u> with acetyl chloride afforded N-acetylformamide <u>9</u> in excellent yield, which might be formed through N-acetylcarbamoyl silane <u>8</u> with cleaving carbon-silicon bond.

4364

The nmr spectrum of the carbamoyl silane <u>6a</u> suggests the existence of a tautomerism between the structures <u>6A</u> and <u>6B</u>.⁴ A similar phenomenon was also observed in the case of <u>7a</u>, <u>i.e</u>., the nmr spectrum of <u>7a</u> displays four signals in the region § 8.30-9.40. After D₂O treatment, two broad singlets disappeared while two singlets remained, which are reasonably assigned to C-H protons of the structures, <u>7A</u> and <u>7B</u>. The situation is similar in the case of <u>6b</u> and <u>7b</u>. Spectral data for these formamides and their derivatives are listed in the Table.

PhNH-C-SiEt 3 I O	<u> </u>	PhN=C-SiEt3 HO	PhND-C-H O	1	PhN=C-H DO
<u>6A</u>		<u>6B</u>	<u>7</u> A		<u>7B</u>

<u>Table</u> 1:1 Adducts of Triethylsilane with Isocyanates and Their Derivatives⁵

Compound —	IR (cr	IR (cm ⁻¹)		NMR (S)		Bp(°C/mm)	
	VNH	у̀с=о	NH or OH	-СН=О	-COCH3	or Mp(°C)	
<u>3</u>		1670sh 1630		7.05		140/0.12	
4	3200	1655	8.63	8.63		141-142	
5		1650		10.60	1.94	(lit., ⁶ 137.5) 79-81	
<u>6a</u>	3270	1675	7.64 8.27			90/0.45	
<u>7a</u>	3240	1670	8.61 9.00	8.35 8.79		45-46	
<u>9a</u>		1720 1685		9.40	2.05	(lit., 47.5) 55-57 (lit., ⁸ 56-57)	
<u>6b</u>	3300	1670	8.12 8.17			82/1.0	
<u>7b</u>	3260	1660	7.00-7.4	4 7.83 8.03		130/20	
<u>9b</u>		1725 1670		9.17	2.41	135/15	

Consequently, the hydrosilylation of isocyanates catalyzed by palladium may open a novel device for the preparation of formamides and also for the synthesis of a new type of silicon compounds, carbamoyl silanes, and the intermediately formed silylated formamides and carbamoyl silanes have been found to serve a good precursor of N-acetyl formamides.

REFERENCES

- 1. D. H. Lorenz and E. I. Becker, J. Org. Chem., 28, 1707 (1963).
- J. G. Noltes and M. J. Janssen, J. Organometal. Chem., <u>1</u>, 346 (1964); Yu. I. Dergunov, A. V. Pavlycheva, V. D. Sheludyakov, I. A. Vostokov, Yu. I. Mushkin, V. F. Mironov and V. P. Kosyukov, Zhur. Obshch. Khim., 42, 2501 (1972).
- R. Wesseley and W. Swoboda, Monatsh., <u>82</u>, 621 (1961); W. Ried and F. Müller, Chem. Ber., <u>85</u>, 470 (1962).
- D₂⁰ treatment of the carbamoyl silane resulted in the formation of the corresponding formamide 7a.
- The nmr and ir spectra, and elemental analyses of all new compounds are consistent with the assigned structures.
- 6. S. Sugasawa and H. Shigehara, J. Pharm. Soc. Japan, <u>62</u>, 531 (1942).
- 7. N. Fröschl and P. Bomberg, Monatsh., <u>48</u>, 573 (1927).
- 8. W. Walden, J. Amer. Chem. Soc., 19, 134 (1897).
- 9. F. F. Blicke and C-J. Lu, ibid., 74, 3933 (1953).